

Using Deep Genome Skimming to resolve phylogenetic relationships in Fuchsia and Circaea

Lucia Anderson^{a,b}, Warren Wagner^a, Jun Wen^a, Gabriel Johnson^a ^aDepartment of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA

^bThe Pennsylvania State University, University Park, PA, USA

Introduction

Fuchsia is the third largest genus in family Onagraceae, and the only genus with berries and biporate pollen. Species of Fuchsia range from Central and South America, with some species native to Hispaniola and the Pacific Islands (New Zealand and Tahiti)1.

Molecular analyses have shown that Fuchsia and the widespread circumboreal genus, *Circaea*, are sister genera² and have confirmed the characterbased sectional groups within Fuchsia. These analyses, however, have lacked the resolution and sampling depth to determine early evolutionary history, biogeographical diversification, and the inter-sectional relationships of the genus¹, leaving many unanswered questions regarding Fuchsia's origins.

Molecular Methods

Figure 1: Fuchsia molecular phylogeny from Berry et al. (2004) with range distribution, sectional divisions, and flower morphology. Dotted lines represent unresolved phylogenetic relationships¹.

Research Goals

Library Preparation Sequencing libraries created with Kapa Hyper Prep Kit and iTru Dual Indexes

Bioinformatic Analysis

Genome Trimming and Quality Control

FastP³ is used to removed adapters and low-quality reads from the whole genome reads.

Genome Assembly and Alignment

The plastome is assembled (*de novo* and reference mapped) using GetOrganelle4. Low copy nuclear genes are assembled via target reference mapping to ~300 loci using HybPiper⁶. Genomes are aligned using and MAFFT⁵.

- **Resolve the early diversification within Fuchsia**
- **Evaluate the success of Deep Genome Skimming within Onagraceae systematics as an alternative to Target** Enrichment
- Further explore the evolutionary relationships between **Circaea** and **Fuchsia**

Herbarium Sampling

Sampling Aims:		
Represent every section/clade	Obtain highest quality leaf material	
Captures diversity of genera	Expands on previous studies	
	Figure 2: Researchers	

Phylogenetic trees are generated using ASTRAL⁷ and RAxML⁸. **Biogeographical data mapped** using BioGeoBears⁹.

Next Steps

- Finish collecting molecular data.
- 28 samples extracted and
 - sequenced with 16 remaining.
- **Conduct bioinformatic analysis and** create phylogenetic trees.
- Map morphological data,

for sampling.

Figure 3: Herbarium sheet of Fuchsia boliviana (Wood 5205 US).

Photo by James Di Loreto, Smithsonian Institution

Sampling Breakdown:

- Species Sampled: 44
- 33 Fuchsia, 9 Circaea, 2 Huaya, 1 Megacorax (outgroups)
- Herbarium specimen from US National Herbarium

biogeographic data, and fossil

record data to phylogenetic results.

- **Expand sampling effort of Circaea**
 - to build upon previous analyses.

Figure 4: Fuchsia caucana in Nario, Colombia (Berry 3252 MO). Photo by Paul E. Berry, University of Michigan.

References and Acknowledgements

¹Berry, P. E., W. J. Hahn, K. J. Sytsma, J. C. Hall, and A. Mast. 2004. Phylogenetic relationships and biogeography of Fuchsia (Onagraceae) based on noncoding nuclear and chloroplast DNA data. Amer. J. Bot. 91: 601–614. ²Bult, C. J., and E. A. Zimmer. 1993. Nuclear ribosomal RNA sequences for inferring tribal relationships within Onagraceae. Systematic Botany 18: 48–63. ³FASTP: Shifu Chen. 2023. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2: e107. ⁴GetOrganelle: Jian-Jun Jin*, Wen-Bin Yu*, Jun-Bo Yang, Yu Song, Claude W. dePamphilis, Ting-Shuang Yi, De-Zhu Li. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21, 241 (2020). ⁵Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). ⁶Johnson, M. G., Gardner, E. M., Liu, Y., Medina, R., Goffinet, B., Shaw, A. J., Zerega, N. J. C, and Wickett, N. J. (2016). HybPiper: Extracting Coding Sequence and Introns for Phylogenetics from High-Throughput Sequencing Reads Using Target Enrichment. Applications in Plant Sciences, 4(7), 1600016. ⁷Zhang, Chao, Maryam Rabiee, Erfan Sayyari, and Siavash Mirarab. 2018. "ASTRAL-III: Polynomial Time Species Tree Reconstruction from Partially Resolved Gene Trees." BMC Bioinformatics 19 (S6): 153. ⁸Alexey M. Kozlov, Diego Darriba, Tomáš Flouri, Benoit Morel, and Alexandros Stamatakis (2019) RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35 (21), 4453-4455 ⁹Matzke, Nicholas J. (2018). BioGeoBEARS: BioGeography with Bayesian (and likelihood) Evolutionary Analysis with R Scripts. version 1.1.1, published on GitHub on November 6, 2018. We would like to thank the NHRE program advisors, Jessica Johnson and Virginia Power, and directors, Vanessa González and Ioan Lascu for their support. We thank Alice Tangerini and Michelle-Marie Nelson for their help with figure design. We thank Jun Wen and Warren Wagner for the funding for this project, and NSF for the funding of this REU program.

Background image courtesy of Paul E. Berry, University of Michigan.

Image courtesy of Department of Botany

Collections Database, Smithsonian

Institution

NATIONAL MUSEUM of NATURAL **HISTORY** Smithsonian

